z-logo
open-access-imgOpen Access
Urinary microRNA in kidney disease: utility and roles
Author(s) -
In O Sun,
Lilach O. Lerman
Publication year - 2019
Publication title -
ajp renal physiology
Language(s) - English
Resource type - Journals
eISSN - 1931-857X
pISSN - 1522-1466
DOI - 10.1152/ajprenal.00368.2018
Subject(s) - microrna , disease , kidney disease , biology , kidney , urinary system , bioinformatics , microvesicles , mechanism (biology) , computational biology , medicine , pathology , gene , endocrinology , genetics , philosophy , epistemology
MicroRNAs (miRNAs) are small, noncoding single-stranded RNA oligonucleotides that modulate physiological and pathological processes by modulating target gene expression. Many miRNAs display tissue-specific expression patterns, the dysregulation of which has been associated with various disease states, including kidney disease. Mounting evidence implicates miRNAs in various biological processes, such as cell proliferation and differentiation and cancer. Because miRNAs are relatively stable in tissue and biological fluids, particularly when carried by extracellular vesicles, changes in their levels may reflect the development of human disease. Urinary miRNAs originate from primary kidney and urinary tract cells, cells infiltrating the renal tissue and shed in the urine, or the systemic circulation. Although their validity as biomarkers for kidney disease has not been fully established, studies have been applying analysis of miRNAs in the urine in an attempt to detect and monitor acute and chronic renal diseases. Because appreciation of the significance of miRNAs in the renal field is on the rise, an understanding of miRNA pathways that regulate renal physiology and pathophysiology is becoming critically important. This review aims to summarize new data obtained in this field of research. It is hoped that new developments in the use of miRNAs as biomarkers and/or therapy will help manage and contain kidney disease in affected subjects.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom