
Low Po 2 conditions induce reactive oxygen species formation during contractions in single skeletal muscle fibers
Author(s) -
Li Zuo,
Amy Shiah,
William J. Roberts,
Michael T. Chien,
Peter D. Wagner,
Michael C. Hogan
Publication year - 2013
Publication title -
american journal of physiology. regulatory, integrative and comparative physiology/american journal of physiology. regulatory, integrative, and comparative physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.266
H-Index - 175
eISSN - 1522-1490
pISSN - 0363-6119
DOI - 10.1152/ajpregu.00563.2012
Subject(s) - ebselen , chemistry , reactive oxygen species , skeletal muscle , biophysics , contraction (grammar) , oxidative stress , sarcomere , superoxide dismutase , biochemistry , anatomy , endocrinology , glutathione peroxidase , myocyte , biology
Contractions in whole skeletal muscle during hypoxia are known to generate reactive oxygen species (ROS); however, identification of real-time ROS formation within isolated single skeletal muscle fibers has been challenging. Consequently, there is no convincing evidence showing increased ROS production in intact contracting fibers under low Po₂ conditions. Therefore, we hypothesized that intracellular ROS generation in single contracting skeletal myofibers increases during low Po₂ compared with a value approximating normal resting Po₂. Dihydrofluorescein was loaded into single frog (Xenopus) fibers, and fluorescence was used to monitor ROS using confocal microscopy. Myofibers were exposed to two maximal tetanic contractile periods (1 contraction/3 s for 2 min, separated by a 60-min rest period), each consisting of one of the following treatments: high Po₂ (30 Torr), low Po₂ (3-5 Torr), high Po₂ with ebselen (antioxidant), or low Po₂ with ebselen. Ebselen (10 μM) was administered before the designated contractile period. ROS formation during low Po₂ treatment was greater than during high Po₂ treatment, and ebselen decreased ROS generation in both low- and high-Po₂ conditions (P < 0.05). ROS accumulated at a faster rate in low vs. high Po₂. Force was reduced >30% for each condition except low Po₂ with ebselen, which only decreased ~15%. We concluded that single myofibers under low Po₂ conditions develop accelerated and more oxidative stress than at Po₂ = 30 Torr (normal human resting Po₂). Ebselen decreases ROS formation in both low and high Po₂, but only mitigates skeletal muscle fatigue during reduced Po₂ conditions.