Human trabecular meshwork cell volume regulation
Author(s) -
Claire H. Mitchell,
Johannes Fleischhauer,
W. Daniel Stamer,
K. Peterson–Yantorno,
Mortimer M. Civan
Publication year - 2002
Publication title -
ajp cell physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.432
H-Index - 181
eISSN - 1522-1563
pISSN - 0363-6143
DOI - 10.1152/ajpcell.00544.2001
Subject(s) - chemistry , channel blocker , bumetanide , biophysics , cotransporter , niflumic acid , extracellular , patch clamp , antiporter , tetraethylammonium , dids , trabecular meshwork , ion transporter , biochemistry , sodium , membrane , calcium , potassium , biology , receptor , organic chemistry , neuroscience , glaucoma
The volume of certain subpopulations of trabecular meshwork (TM) cells may modify outflow resistance of aqueous humor, thereby altering intraocular pressure. This study examines the contribution that Na+/H+, Cl-/HCO exchange, and K+-Cl- efflux mechanisms have on the volume of TM cells. Volume, Cl- currents, and intracellular Ca2+ activity of cultured human TM cells were studied with calcein fluorescence, whole cell patch clamping, and fura 2 fluorescence, respectively. At physiological bicarbonate concentration, the selective Na+/H+ antiport inhibitor dimethylamiloride reduced isotonic cell volume. Hypotonicity triggered a regulatory volume decrease (RVD), which could be inhibited by the Cl- channel blocker 5-nitro-2-(3-phenylpropylamino)-benzoate (NPPB), the K+ channel blockers Ba2+ and tetraethylammonium, and the K+-Cl- symport blocker [(dihydroindenyl)oxy]alkanoic acid. The fluid uptake mechanism in isotonic conditions was dependent on bicarbonate; at physiological levels, the Na+/H+ exchange inhibitor dimethylamiloride reduced cell volume, whereas at low levels the Na+-K+-2Cl- symport inhibitor bumetanide had the predominant effect. Patch-clamp measurements showed that hypotonicity activated an outwardly rectifying, NPPB-sensitive Cl- channel displaying the permeability ranking Cl- > methylsulfonate > aspartate. 2,3-Butanedione 2-monoxime antagonized actomyosin activity and both increased baseline [Ca2+] and abolished swelling-activated increase in [Ca2+], but it did not affect RVD. Results indicate that human TM cells display a Ca2+-independent RVD and that volume is regulated by swelling-activated K+ and Cl- channels, Na+/H+ antiports, and possibly K+-Cl- symports in addition to Na+-K+-2Cl- symports.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom