z-logo
open-access-imgOpen Access
Calcium-Antimony Alloys as Electrodes for Liquid Metal Batteries
Author(s) -
Takanari Ouchi,
Hojong Kim,
Xiaohui Ning,
Donald R. Sadoway
Publication year - 2014
Publication title -
journal of the electrochemical society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.258
H-Index - 271
eISSN - 1945-7111
pISSN - 0013-4651
DOI - 10.1149/2.0801412jes
Subject(s) - antimony , faraday efficiency , electrode , electromotive force , electrochemistry , materials science , analytical chemistry (journal) , metal , chemistry , inorganic chemistry , metallurgy , electrical engineering , chromatography , engineering
The performance of a calcium-antimony (Ca-Sb) alloy serving as the positive electrode in a Ca∥Sb liquid metal battery was investigated in an electrochemical cell, Ca(in Bi) | LiCl-NaCl-CaCl[subscript 2] | Ca(in Sb). The equilibrium potential of the Ca-Sb electrode was found to lie on the interval, 1.2–0.95 V versus Ca, in good agreement with electromotive force (emf) measurements in the literature. During both alloying and dealloying of Ca at the Sb electrode, the charge transfer and mass transport at the interface are facile enough that the electrode potential varies linearly from 0.95 to 0.75 V vs Ca(s) as current density varies from 50 to 500 mA cm[superscript −2]. The discharge capacity of the Ca∥Sb cells increases as the operating temperature increases due to the higher solubility and diffusivity of Ca in Sb. The cell was successfully cycled with high coulombic efficiency (∼100%) and small fade rate (<0.01% cycle[superscript −1]). These data combined with the favorable costs of these metals and salts make the Ca∥Sb liquid metal battery attractive for grid-scale energy storage.United States. Advanced Research Projects Agency-Energy (Award DE-AR47)TOTAL (Firm)Marubun Research Promotion FoundationMurata Overseas Scholarship Foundatio

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom