Effects of Annealing on Chemical-Vapor Deposited PureB Layers
Author(s) -
K. R. C. Mok,
A.H.G. Vlooswijk,
V. Mohammadi,
Lis K. Nanver
Publication year - 2013
Publication title -
ecs journal of solid state science and technology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.488
H-Index - 51
eISSN - 2162-8777
pISSN - 2162-8769
DOI - 10.1149/2.044309jss
Subject(s) - materials science , annealing (glass) , sheet resistance , boron , passivation , oxide , dopant , silicon , oxygen , thermal oxidation , chemical engineering , layer (electronics) , doping , analytical chemistry (journal) , nanotechnology , composite material , optoelectronics , metallurgy , chemistry , organic chemistry , engineering
Chemical-vapor-deposited pure boron (PureB) layers can be used as a source of p-type boron dopants for thermal diffusion into silicon during a drive-in anneal. In this work, the effect of thermally annealing PureB layers is investigated in terms of surface morphology and electrical properties. The presence of a few nanometer-thick PureB layer on the Si surface was found to increase the silicon oxide growth rate by several factors during annealing in an oxygen-containing atmosphere. The oxide thickness was dependent on the initial PureB layer thickness and oxygen concentration during anneal. In an oxygen-limited atmosphere, the final thickness is insensitive to the anneal temperature as the reaction is diffusion-limited and, after oxide removal, a hydrophilic boron rich layer remains on the Si surface. With a high oxygen concentration, the boron is depleted by an oxidation of the boron-doped silicon resulting in a lower surface concentration and higher sheet resistance. A reaction mechanism involving the oxidation of Si-B compounds to form B2O3 is proposed to explain the experimental observations. With solar cell and other photodiode applications in mind, the sheet resistance and carrier lifetime measurements were performed and show that a one-step oxidation process can simultaneously drive-in the dopants and form an oxide passivation layer
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom