z-logo
open-access-imgOpen Access
Thermochemical Properties of Halides and Halohydrides of Silicon and Carbon
Author(s) -
Pitsiri Sukkaew,
Lars Ojamäe,
Olof Kordina,
Erik Janzén,
Örjan Danielsson
Publication year - 2015
Publication title -
ecs journal of solid state science and technology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.488
H-Index - 51
eISSN - 2162-8777
pISSN - 2162-8769
DOI - 10.1149/2.0081602jss
Subject(s) - standard enthalpy of formation , diatomic molecule , materials science , thermodynamics , excited state , halide , atomic physics , chemistry , molecule , physics , quantum mechanics , inorganic chemistry
Atomization energies, enthalpies of formation, entropies as well as heat capacities of the SiHnXm and CHnXm systems, with X being F, Cl and Br, have been studied using quantum chemical calculations. The Gaussian-4 theory (G4) and Weizman-1 theory as modified by Barnes et al. 2009 (W1RO) have been applied in the calculations of the electronic, zero point and thermal energies. The effects of low-lying electronically excited states due to spin orbit coupling were included for all atoms and diatomic species by mean of the electronic partition functions derived from the experimental or computational energy splittings. The atomization energies, enthalpies of formation, entropies and heat capacities derived from both methods were observed to be reliable. The thermochemical properties in the temperature range of 298-2500 K are provided in the form of 7-coefficient NASA polynomials. (C) The Author(s) 2015. Published by ECS. All rights reserved.

Funding Agencies|Swedish Foundation for Strategic Research

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom