Large-Grained Polycrystalline (111) Ge Films on Insulators by Thickness-Controlled Al-Induced Crystallization
Author(s) -
Kimitaka Nakazawa,
Kaoru Toko,
Noriyuki Saitoh,
Noriko Yoshizawa,
Noritaka Usami,
Takashi Suemasu
Publication year - 2013
Publication title -
ecs journal of solid state science and technology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.488
H-Index - 51
eISSN - 2162-8777
pISSN - 2162-8769
DOI - 10.1149/2.007311jss
Subject(s) - materials science , crystallite , crystallization , engineering physics , crystallography , metallurgy , chemical engineering , engineering , chemistry
Low-temperature (350°C) crystallization of amorphous Ge films on SiO2 was investigated using Al-induced layer exchange (ALILE) process. Thicknesses of Ge and catalytic Al layers were varied in the range of 30–300 nm, which strongly influenced the ALILE growth morphology. Based on the study, the Ge thickness was adjusted to 40 nm while the Al thickness was adjusted 50 nm. This sample satisfied both of the surface coverage of polycrystalline-Ge and the annihilation of randomly oriented Ge regions. Moreover, the enhancement of the heterogeneous Ge nucleation improved the (111) orientation and the grain size. As a result, the area fraction of the (111)-orientation reached as high as 97% and the average grain size as large as 70-μm diameters. This (111)-oriented Ge layer with large-grains promises to be the high-quality epitaxial template for various functional materials to achieve next-generation devices
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom