The Role of Intermetallic Particles in Localized Corrosion of an Aluminum Alloy Studied by SKPFM and Integrated AFM/SECM
Author(s) -
Ali Davoodi,
Jinshan Pan,
Christofer Leygraf,
S. Norgren
Publication year - 2008
Publication title -
journal of the electrochemical society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.258
H-Index - 271
eISSN - 1945-7111
pISSN - 0013-4651
DOI - 10.1149/1.2883737
Subject(s) - kelvin probe force microscope , volta potential , alloy , corrosion , intermetallic , dissolution , materials science , scanning electrochemical microscopy , nanometre , micrometer , aluminium , metallurgy , electrochemistry , chemistry , atomic force microscopy , composite material , nanotechnology , electrode , optics , physics
A multi-analytical approach based on in-situ and ex-situ local probing techniques was employed to investigate localized corrosion mechanisms of some aluminum alloys in chloride containing solutions, focusing on the influence of intermetallic particles (IMPs) in the alloys. In the EN AW-3003 alloy, SEM-EDS analysis revealed constituent and dispersoid IMPs. There are two types of constituent IMPs, with size ranging from 0.5 to several μm, and composition typically Al6(Fe,Mn) or Al12(Mn,Fe)3Si, respectively,having a Mn/Fe ratio of about 1:1. Fine dispersoids of 0.5 μm or less in size normally have the composition Al12Mn3Si1-2. Scanning Kelvin probe force microscopy (SKPFM measurements showed that the constituent IMPs have a higher Volta potential compared to the matrix, and the Volta potential difference increased with particle size, probably related to the composition of the IMPs. The SKPFM results also showed a Volta potential minimum in the boundary region adjacent to some larger IMPs. The open-circuit potential and electrochemical impedance spectroscopy measurements indicated local electrochemical activities occurring on the surface, and active-like dissolution in the acidic solutions, but a passive-like behavior in the near-neutral solutions. Infrared reflection-absorption spectroscopy measurements after exposure and thermodynamic calculations suggested the formation of mixtures of aluminum oxyhydroxide and acetate on the surface in acetic acid solutions. The formation and fraction of dominant species of the corrosion products depend on the pH of the solution, and aluminum chloride compounds may form at very low pH. Moreover, an integrated in-situ atomic force microscopy (AFM) and scanningelectrochemical microscopy (SECM) set-up was used to investigate the localized activities on the surface. With a dual mode probe, acting as both AFM tip and SECM microelectrode, concurrent topography and electrochemical current images were obtained on the same area of the surface. Numerical simulations of the SECM suggested a micrometer lateral resolution under favorable conditions and the ability to resolve μmsized active sites with a separation distance of about 3 μm or larger. The simulations were verified by SECM mapping of the aluminum alloys in the chloride solutions. The AFM/SECM measurements revealed enhanced cathodic activity on some larger IMPs and local anodic dissolution around larger IMPs. In-situ AFM monitoring confirmed preferential dissolution in the boundary region adjacent to some of these IMPs. The results elucidate the micro-galvanic effect and size effect of the IMPs during the initiation of localized corrosion of the Al alloys. Furthermore, differences in corrosion properties between EN AW-3003 and a newly developed Al–Mn–Si–Zr alloy were studied with a similar approach. Compared to EN AW-3003, the new alloy had a smaller number of particles with a large Volta potential difference relative to the matrix. In slightly corrosive solutions extensive localized dissolution and deposition of corrosion products occurred on EN AW-3003, whereas only a small number of corroding sites and “tunnel-like” pits occurred on the Al–Mn–Si–Zr alloy. The lower corrosion activity and the smaller tunnel-like pits resulted in lower material loss of the Al–Mn–Si–Zr alloy, which is beneficial for applications using a thin material.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom