Effect of Electrode Composition and Microstructure on Impedancemetric Nitric Oxide Sensors Based on YSZ Electrolyte
Author(s) -
Leta Woo,
L. Peter Martin,
Robert S. Glass,
Wensheng Wang,
Sukwon Jung,
Raymond J. Gorte,
Erica Perry Murray,
Robert Novak,
Jaco Visser
Publication year - 2007
Publication title -
journal of the electrochemical society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.258
H-Index - 271
eISSN - 1945-7111
pISSN - 0013-4651
DOI - 10.1149/1.2804766
Subject(s) - yttria stabilized zirconia , electrolyte , materials science , electrode , oxide , microstructure , dielectric spectroscopy , metal , chemical engineering , analytical chemistry (journal) , cubic zirconia , composite material , chemistry , metallurgy , electrochemistry , ceramic , chromatography , engineering
The role of metal (Au, Pt, and Ag) electrodes in yttria-stabilized zirconia (YSZ) electrolyte-based impedancemetric nitric oxide (NO) sensors is investigated using impedance spectroscopy and equivalent circuit analysis. Focus on the metal/porous YSZ interface is based on previous studies using a symmetric cell (metal/YSZ porous /YSZ dense /YSZ porous /metal) and attempts to further elucidate the important processes responsible for sensing. The current test cell consists of a rectangular slab of porous YSZ with two metal-wire loop electrodes (metal/YSZ porous /metal), both exposed to the same atmosphere. Of the electrode materials, only Au was sensitive to changes in NO concentration. The impedance behavior of porous Au electrodes in a slightly different configuration was compared with dense Au electrodes and was also insensitive to NO. Although the exact mechanism is not determined, the composition and microstructure of the metal electrode seem to alter the rate-limiting step of the interfering O 2 reaction. Impedance behavior of the O 2 reaction that is limited by processes occurring away from the triple-phase boundary may be crucial for impedancemetric NO sensing.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom