z-logo
open-access-imgOpen Access
Investigation of Corrosion and Cathodic Protection in Reinforced Concrete
Author(s) -
D.A. Koleva,
J.H.W. de Wit,
Klaas van Breugel,
Z.F. Lodhi,
Epm van Westing
Publication year - 2007
Publication title -
journal of the electrochemical society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.258
H-Index - 271
eISSN - 1945-7111
pISSN - 0013-4651
DOI - 10.1149/1.2436609
Subject(s) - corrosion , cathodic protection , materials science , dielectric spectroscopy , polarization (electrochemistry) , electrochemistry , crystallinity , composite material , scanning electron microscope , metallurgy , electrode , chemistry
The electrochemical behavior of steel reinforcement in conditions of corrosion and cathodic protection was studied, using electrochemical impedance spectroscopy (EIS) and compared to reference (noncorroding) conditions. Polarization resistance (PR) method and potentiodynamic polarization (PDP) were employed as well, in addition to ac 2 pin electrical resistance monitoring, thus deriving a comparison of the involved parameters, mainly polarization resistance and bulk electrical properties, obtained by all methods. It was found out that EIS is readily applicable for evaluating electrochemical behavior of the steel surface not only for corroding or passive state, but also in conditions of cathodic protection, although the interpretation of derived parameters is not straightforward and is related to the properties of the product layers, formed on the steel surface in the different conditions. For verification of the latter dependence, EIS, PDP, and PR measurements were performed additionally in cement extract solution, using steel samples from the previously embedded rebars in all technical conditions. The bulk matrix properties in passive, corroding, or under-protection conditions can be well defined by EIS. The evaluation of the electrochemical behavior of the steel surface, in terms of deriving polarization resistance, should take into account the crystallinity, morphology, and composition of the surface layers, which were investigated by scanning electron microscopy and energy dispersive X-ray analysis

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom