Modeling of Porous Insertion Electrodes with Liquid Electrolyte
Author(s) -
K. West,
Torben Jacobsen,
S. Atlung
Publication year - 1982
Publication title -
journal of the electrochemical society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.258
H-Index - 271
eISSN - 1945-7111
pISSN - 0013-4651
DOI - 10.1149/1.2124188
Subject(s) - electrolyte , electrode , porosity , ion , limiting , limiting current , materials science , chemistry , electrochemistry , mechanics , composite material , physics , engineering , mechanical engineering , organic chemistry
The dynamics of porous insertion electrodes during charge or discharge is described by a simplified mathematical model, accounting for the coupled transport in electrode and electrolyte phases. A numerical method to evaluate the response of this model to either controlled potential or controlled current is outlined, and numerical results for the discharge of a porous TiS/sub 2/ electrode in an idealized organic electrolyte are presented. It is demonstrated how electrolyte depletion is the principal limiting factor in the capacity obtained during discharge of this electrode system. This depletion is a consequence of the mobility of the ions not inserted, therefore the performance or this type of electrode is optimized by choosing electrolytes with transport number as close to unity as possible for the inserted ion. 23 refs.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom