z-logo
open-access-imgOpen Access
Mathematical Modeling of a Nickel‐Cadmium Cell: Proton Diffusion in the Nickel Electrode
Author(s) -
Pauline De Vidts,
Ralph E. White
Publication year - 1995
Publication title -
journal of the electrochemical society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.258
H-Index - 271
eISSN - 1945-7111
pISSN - 0013-4651
DOI - 10.1149/1.2048605
Subject(s) - nickel , ohmic contact , diffusion , electrolyte , proton , chemistry , oxygen , electrode , analytical chemistry (journal) , drop (telecommunication) , kinetics , inorganic chemistry , materials science , thermodynamics , chromatography , electrical engineering , physics , organic chemistry , quantum mechanics , engineering
In this paper the authors present a mathematical model of a sealed nickel-cadmium cell that includes proton diffusion and ohmic drop through the active material in the nickel electrode. The model is used to calculate sensitivity coefficients for various parameters in the model. These calculations show that the discharge voltage of the cell is affected mostly by the kinetics of the nickel reaction. Toward the end of discharge, proton diffusion also becomes important, because the proton diffusion process affects the active material utilization significantly. During charge, the cell voltage is mainly affected by the kinetics of the nickel reaction until the oxygen evolution reaction begins, after which time the kinetics of the oxygen evolution has the largest effect. The oxygen evolution reaction is also the most influencing factor on the actual charge uptake of the cell by the end of a charge operation (charge efficiency). Compared to the rates of reaction and proton diffusion, the ohmic drop in the active material of the nickel electrode and the mass transport and ohmic drop in the electrolyte have negligible effect on the behavior of the cell studied here.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom