z-logo
open-access-imgOpen Access
Thermally Stable Gel Polymer Electrolytes
Author(s) -
MinKyu Song,
Young-Taek Kim,
YongTae Kim,
Byung Won Cho,
Branko N. Popov,
HeeWoo Rhee
Publication year - 2003
Publication title -
journal of the electrochemical society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.258
H-Index - 271
eISSN - 1945-7111
pISSN - 0013-4651
DOI - 10.1149/1.1556592
Subject(s) - electrolyte , polymer , materials science , ethylene carbonate , chemical engineering , propylene carbonate , polymer blend , polyvinylidene fluoride , polymer chemistry , chemistry , copolymer , composite material , electrode , engineering
To prepare miscible polyethylene glycol diacrylate/polyvinylidene fluoride (PEGDA/PVdF) blend gel polymer electrolytes, low molecular weight (M = 742) liquid PEGDA oligomer was mixed with PVdF-HFP dissolved in ethylene carbonate/dimethyl carbonate/LiPF 6 liquid electrolytes, and then cured under ultraviolet irradiation. Room temperature conductivity of PEGDA/PVdF blend films was found to be comparable to that of PVdF-HFP gel polymer electrolytes, and they were electrochemically stable up to 4.6 V vs. Li/Li + Scanning electron micrographs revealed that PEGDA/PVdF blend electrolytes have pore size intermediate between dense PEGDA and highly porous PVdF-HFP. It was confirmed by weight change measurement that liquid electrolyte was likely to evaporate through large pores in PVdF-HFP at 80°C, while PEGDA/PVdF blend showed better liquid electrolyte retention ability. This result was in good agreement with more stable interfacial properties of PEGDA/PVdF blend at 80°C in ac impedance analysis. Consequently, both PVdF-HFP and PEGDA/PVdF gel polymer electrolytes delivered similar discharge capacity at room temperature, but PEGDA/PVdF blend gel polymer electrolyte showed much better cycle performance than pure PVdF-HFP at 80°C.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom