z-logo
open-access-imgOpen Access
Imaging-based Quantification of Hepatic Fat: Methods and Clinical Applications
Author(s) -
Xiaozhou Ma,
Nagaraj-Setty Holalkere,
Avinash Kambadakone R,
Mari MinoKenudson,
Peter F. Hahn,
Dushyant V. Sahani
Publication year - 2009
Publication title -
radiographics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.866
H-Index - 172
eISSN - 1527-1323
pISSN - 0271-5333
DOI - 10.1148/rg.295085186
Subject(s) - medicine , steatosis , fatty liver , cirrhosis , steatohepatitis , magnetic resonance imaging , radiology , in vivo magnetic resonance spectroscopy , liver disease , hepatic fibrosis , pathology , disease
Fatty liver disease comprises a spectrum of conditions (simple hepatic steatosis, steatohepatitis with inflammatory changes, and end-stage liver disease with fibrosis and cirrhosis). Hepatic steatosis is often associated with diabetes and obesity and may be secondary to alcohol and drug use, toxins, viral infections, and metabolic diseases. Detection and quantification of liver fat have many clinical applications, and early recognition is crucial to institute appropriate management and prevent progression. Histopathologic analysis is the reference standard to detect and quantify fat in the liver, but results are vulnerable to sampling error. Moreover, it can cause morbidity and complications and cannot be repeated often enough to monitor treatment response. Imaging can be repeated regularly and allows assessment of the entire liver, thus avoiding sampling error. Selection of appropriate imaging methods demands understanding of their advantages and limitations and the suitable clinical setting. Ultrasonography is effective for detecting moderate or severe fatty infiltration but is limited by lack of interobserver reliability and intraobserver reproducibility. Computed tomography allows quantitative and qualitative evaluation and is generally highly accurate and reliable; however, the results may be confounded by hepatic parenchymal changes due to cirrhosis or depositional diseases. Magnetic resonance (MR) imaging with appropriate sequences (eg, chemical shift techniques) has similarly high sensitivity, and MR spectroscopy provides unique advantages for some applications. However, both are expensive and too complex to be used to monitor steatosis.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here