z-logo
open-access-imgOpen Access
WiPhone
Author(s) -
Jinyi Liu,
Youwei Zeng,
Tao Gu,
Leye Wang,
Daqing Zhang
Publication year - 2021
Publication title -
proceedings of the acm on interactive mobile wearable and ubiquitous technologies
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.199
H-Index - 5
ISSN - 2474-9567
DOI - 10.1145/3448092
Subject(s) - non line of sight propagation , computer science , channel state information , real time computing , preprocessor , leverage (statistics) , artificial intelligence , wireless , telecommunications
Recent years have witnessed a trend of monitoring human respiration using Channel State Information (CSI) retrieved from commodity WiFi devices. Existing approaches essentially leverage signal propagation in a Line-of-Sight (LoS) setting to achieve good performance. However, in real-life environments, LoS can be easily blocked by furniture, home appliances and walls. This paper presents a novel smartphone-based system named WiPhone, aiming to robustly monitor human respiration in NLoS settings. Since a smartphone is usually carried around by one subject, leveraging directly-reflected CSI signals in LoS becomes infeasible. WiPhone exploits ambient reflected CSI signals in a Non-Line-of-Sight (NLoS) setting to quantify the relationship between CSI signals reflected from the environment and a subject’s chest displacement. In this way, WiPhone successfully turns ambient reflected signals which have been previously considered “destructive” into beneficial sensing capability. CSI signals obtained from smartphone are usually very noisy and may scatter over different sub-carriers. We propose a density-based preprocessing method to extract useful CSI amplitude patterns for effective respiration monitoring. We conduct extensive experiments with 8 subjects in a real home environment. WiPhone achieves a respiration rate error of 0.31 bpm (breaths per minute) on average in a range of NLoS settings.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom