PROLISEAN
Author(s) -
Edy Hourany,
Bachir Habib,
Camille Fountaine,
Abdallah Makhoul,
Benoît Piranda,
Julien Bourgeois
Publication year - 2021
Publication title -
acm transactions on internet technology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.667
H-Index - 56
eISSN - 1557-6051
pISSN - 1533-5399
DOI - 10.1145/3432250
Subject(s) - computer science , protocol (science) , hash function , encryption , architecture , cryptography , distributed computing , cryptographic protocol , component (thermodynamics) , embedded system , computer security , medicine , art , physics , alternative medicine , pathology , visual arts , thermodynamics
The vision for programmable matter is to create a material that can be reprogrammed to have different shapes and to change its physical properties on demand. They are autonomous systems composed of a huge number of independent connected elements called particles. The connections to one another form the overall shape of the system. These particles are capable of interacting with each other and take decisions based on their environment. Beyond sensing, processing, and communication capabilities, programmable matter includes actuation and motion capabilities. It could be deployed in different domains and will constitute an intelligent component of the IoT. A lot of applications can derive from this technology, such as medical or industrial applications. However, just like any other technology, security is a huge concern. Given its distributed architecture and its processing limitations, programmable matter cannot handle the traditional security protocols and encryption algorithms. This article proposes a new security protocol optimized and dedicated for IoT programmable matter. This protocol is based on lightweight cryptography and uses the same encryption protocol as a hashing function while keeping the distributed architecture in mind. The analysis and simulation results show the efficiency of the proposed method and that a supercomputer will need about 5.93 × 1025 years to decrypt the message.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom