z-logo
open-access-imgOpen Access
Automated Detection of Stressful Conversations Using Wearable Physiological and Inertial Sensors
Author(s) -
Rummana Bari,
Md. Mahbubur Rahman,
Nazir Saleheen,
Megan Battles Parsons,
Eugene H. Buder,
Santosh Kumar
Publication year - 2020
Publication title -
proceedings of the acm on interactive mobile wearable and ubiquitous technologies
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.199
H-Index - 5
ISSN - 2474-9567
DOI - 10.1145/3432210
Subject(s) - stressor , conversation , arousal , wearable computer , event (particle physics) , stress (linguistics) , affect (linguistics) , psychology , computer science , applied psychology , social psychology , communication , clinical psychology , linguistics , philosophy , physics , quantum mechanics , embedded system
Stressful conversation is a frequently occurring stressor in our daily life. Stressors not only adversely affect our physical and mental health but also our relationships with family, friends, and coworkers. In this paper, we present a model to automatically detect stressful conversations using wearable physiological and inertial sensors. We conducted a lab and a field study with cohabiting couples to collect ecologically valid sensor data with temporally-precise labels of stressors. We introduce the concept of stress cycles, i.e., the physiological arousal and recovery, within a stress event. We identify several novel features from stress cycles and show that they exhibit distinguishing patterns during stressful conversations when compared to physiological response due to other stressors. We observe that hand gestures also show a distinct pattern when stress occurs due to stressful conversations. We train and test our model using field data collected from 38 participants. Our model can determine whether a detected stress event is due to a stressful conversation with an F1-score of 0.83, using features obtained from only one stress cycle, facilitating intervention delivery within 3.9 minutes since the start of a stressful conversation.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom