Linking Focusing and Resolution with Selection
Author(s) -
Guillaume Burel
Publication year - 2020
Publication title -
acm transactions on computational logic
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.593
H-Index - 52
eISSN - 1557-945X
pISSN - 1529-3785
DOI - 10.1145/3373276
Subject(s) - sequent , sequent calculus , modulo , cut elimination theorem , resolution (logic) , rewriting , mathematics , rule of inference , natural deduction , mathematical proof , equivalence (formal languages) , linear logic , generalization , proof theory , calculus (dental) , proof calculus , discrete mathematics , algorithm , computer science , programming language , medicine , mathematical analysis , geometry , dentistry
Focusing and selection are techniques that shrink the proof-search space for respectively sequent calculi and resolution. To bring out a link between them, we generalize them both: we introduce a sequent calculus where each occurrence of an atomic formula can have a positive or a negative polarity; and a resolution method where each literal, whatever its sign, can be selected in input clauses. We prove the equivalence between cut-free proofs in this sequent calculus and derivations of the empty clause in that resolution method. Such a generalization is not semi-complete in general, which allows us to consider complete instances that correspond to theories of any logical strength. We present three complete instances: first, our framework allows us to show that ordinary focusing corresponds to hyperresolution and semantic resolution; the second instance is deduction modulo theory and the related framework called superdeduction; and a new setting, not captured by any existing framework, extends deduction modulo theory with rewriting rules having several left-hand sides, which restricts even more the proof-search space.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom