Weakly-hard Real-time Guarantees for Earliest Deadline First Scheduling of Independent Tasks
Author(s) -
Zain A. H. Hammadeh,
Sophie Quinton,
Rolf Ernst
Publication year - 2019
Publication title -
acm transactions on embedded computing systems
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.435
H-Index - 56
eISSN - 1558-3465
pISSN - 1539-9087
DOI - 10.1145/3356865
Subject(s) - computer science , scheduling (production processes) , bounded function , earliest deadline first scheduling , distributed computing , worst case execution time , context switch , preemption , partition (number theory) , real time operating system , real time computing , execution time , parallel computing , dynamic priority scheduling , rate monotonic scheduling , quality of service , embedded system , operating system , mathematical optimization , computer network , mathematical analysis , mathematics , combinatorics
The current trend in modeling and analyzing real-time systems is toward tighter yet safe timing constraints. Many practical real-time systems can de facto sustain a bounded number of deadline-misses, i.e., they have Weakly-Hard Real-Time (WHRT) constraints rather than hard real-time constraints. Therefore, we strive to provide tight Deadline Miss Models (DMMs) in complement to tight response time bounds for such systems. In this work, we bound the distribution of deadline-misses for task sets running on uniprocessors using the Earliest Deadline First (EDF) scheduling policy. We assume tasks miss their deadlines due to transient overload resulting from sporadic jobs, e.g., interrupt service routines. We use Typical Worst-Case Analysis (TWCA) to tackle the problem in this context. Also, we address the sources of pessimism in computing DMMs, and we discuss the limitations of the proposed analysis. This work is motivated by and validated on a realistic case study inspired by industrial practice (satellite on-board software) and on a set of synthetic test cases. The synthetic experiment is dedicated to extensively study the impact of EDF on DMMs by presenting a comparison between DMMs computed under EDF and Rate Monotonic (RM). The results show the usefulness of this approach for temporarily overloaded systems when EDF scheduling is considered. They also show that EDF is especially useful for WHRT tasks.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom