z-logo
open-access-imgOpen Access
Algorithm/Architecture Co-optimisation Technique for Automatic Data Reduction of Wireless Read-Out in High-Density Electrode Arrays
Author(s) -
Yahya H. Yassin,
Francky Catthoor,
Fabian Kloosterman,
JyhJang Sun,
João Couto,
Per Gunnar Kjeldsberg,
Nick Van Helleputte
Publication year - 2018
Publication title -
acm transactions on embedded computing systems
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.435
H-Index - 56
eISSN - 1558-3465
pISSN - 1539-9087
DOI - 10.1145/3190854
Subject(s) - computer science , scalability , spike (software development) , reduction (mathematics) , wireless , bandwidth (computing) , electrode , data reduction , energy (signal processing) , algorithm , computer hardware , real time computing , data mining , telecommunications , chemistry , statistics , geometry , mathematics , software engineering , database
High-density electrode arrays used to read out neural activity will soon surpass the limits of the amount of data that can be transferred within reasonable energy budgets. This is true for wired brain implants when the required bandwidth becomes very high, and even more so for untethered brain implants that require wireless transmission of data. We propose an energy-efficient spike data extraction solution for high-density electrode arrays, capable of reducing the data to be transferred by over 85%. We combine temporal and spatial spike data analysis with low implementation complexity, where amplitude thresholds are used to detect spikes and the spatial location of the electrodes is used to extract potentially useful sub-threshold data on neighboring electrodes. We tested our method against a state-of-the-art spike detection algorithm, with prohibitively high implementation complexity, and found that the majority of spikes are extracted reliably. We obtain further improved quality results when ignoring very small spikes below 30% of the voltage thresholds, resulting in 91% accuracy. Our approach uses digital logic and is therefore scalable with an increasing number of electrodes.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom