SCAN
Author(s) -
Balz Maag,
Zimu Zhou,
Olga Saukh,
Lothar Thiele
Publication year - 2017
Publication title -
proceedings of the acm on interactive mobile wearable and ubiquitous technologies
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.199
H-Index - 5
ISSN - 2474-9567
DOI - 10.1145/3090084
Subject(s) - calibration , computer science , noise (video) , consistency (knowledge bases) , real time computing , environmental science , remote sensing , statistics , artificial intelligence , mathematics , geography , image (mathematics)
Urban air pollution monitoring with mobile, portable, low-cost sensors has attracted increasing research interest for their wide spatial coverage and affordable expenses to the general public. However, low-cost air quality sensors not only drift over time but also suffer from cross-sensitivities and dependency on meteorological effects. Therefore calibration of measurements from low-cost sensors is indispensable to guarantee data accuracy and consistency to be fit for quantitative studies on air pollution. In this work we propose sensor array network calibration (SCAN), a multi-hop calibration technique for dependent low-cost sensors. SCAN is applicable to sets of co-located, heterogeneous sensors, known as sensor arrays, to compensate for cross-sensitivities and dependencies on meteorological influences. SCAN minimizes error accumulation over multiple hops of sensor arrays, which is unattainable with existing multi-hop calibration techniques. We formulate SCAN as a novel constrained least-squares regression and provide a closed-form expression of its regression parameters. We theoretically prove that SCAN is free from regression dilution even in presence of measurement noise. In-depth simulations demonstrate that SCAN outperforms various calibration techniques. Evaluations on two real-world low-cost air pollution sensor datasets comprising 66 million samples collected over three years show that SCAN yields 16% to 60% lower error than state-of-the-art calibration techniques.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom