z-logo
open-access-imgOpen Access
SCAN
Author(s) -
Balz Maag,
Zimu Zhou,
Olga Saukh,
Lothar Thiele
Publication year - 2017
Publication title -
proceedings of the acm on interactive mobile wearable and ubiquitous technologies
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.199
H-Index - 5
ISSN - 2474-9567
DOI - 10.1145/3090084
Subject(s) - calibration , computer science , noise (video) , consistency (knowledge bases) , real time computing , environmental science , remote sensing , statistics , artificial intelligence , mathematics , geography , image (mathematics)
Urban air pollution monitoring with mobile, portable, low-cost sensors has attracted increasing research interest for their wide spatial coverage and affordable expenses to the general public. However, low-cost air quality sensors not only drift over time but also suffer from cross-sensitivities and dependency on meteorological effects. Therefore calibration of measurements from low-cost sensors is indispensable to guarantee data accuracy and consistency to be fit for quantitative studies on air pollution. In this work we propose sensor array network calibration (SCAN), a multi-hop calibration technique for dependent low-cost sensors. SCAN is applicable to sets of co-located, heterogeneous sensors, known as sensor arrays, to compensate for cross-sensitivities and dependencies on meteorological influences. SCAN minimizes error accumulation over multiple hops of sensor arrays, which is unattainable with existing multi-hop calibration techniques. We formulate SCAN as a novel constrained least-squares regression and provide a closed-form expression of its regression parameters. We theoretically prove that SCAN is free from regression dilution even in presence of measurement noise. In-depth simulations demonstrate that SCAN outperforms various calibration techniques. Evaluations on two real-world low-cost air pollution sensor datasets comprising 66 million samples collected over three years show that SCAN yields 16% to 60% lower error than state-of-the-art calibration techniques.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom