z-logo
open-access-imgOpen Access
Personalized Microtopic Recommendation on Microblogs
Author(s) -
Yang Li,
Jing Jiang,
Ting Liu,
Minghui Qiu,
Xiaofei Sun
Publication year - 2017
Publication title -
acm transactions on intelligent systems and technology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.914
H-Index - 63
eISSN - 2157-6912
pISSN - 2157-6904
DOI - 10.1145/2932192
Subject(s) - computer science , microblogging , social media , baseline (sea) , information retrieval , recommender system , task (project management) , probabilistic logic , collaborative filtering , world wide web , matrix decomposition , artificial intelligence , oceanography , eigenvalues and eigenvectors , physics , management , quantum mechanics , economics , geology
Microblogging services such as Sina Weibo and Twitter allow users to create tags explicitly indicated by the # symbol. In Sina Weibo, these tags are called microtopics, and in Twitter, they are called hashtags. In Sina Weibo, each microtopic has a designate page and can be directly visited or commented on. Recommending these microtopics to users based on their interests can help users efficiently acquire information. However, it is non-trivial to recommend microtopics to users to satisfy their information needs. In this article, we investigate the task of personalized microtopic recommendation, which exhibits two challenges. First, users usually do not give explicit ratings to microtopics. Second, there exists rich information about users and microtopics, for example, users' published content and biographical information, but it is not clear how to best utilize such information. To address the above two challenges, we propose a joint probabilistic latent factor model to integrate rich information into a matrix factorization-based solution to microtopic recommendation. Our model builds on top of collaborative filtering, content analysis, and feature regression. Using two real-world datasets, we evaluate our model with different kinds of content and contextual information. Experimental results show that our model significantly outperforms a few competitive baseline methods, especially in the circumstance where users have few adoption behaviors.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom