Matrix Multiplication Over Word-Size Modular Rings Using Approximate Formulas
Author(s) -
Brice Boyer,
JeanGuillaume Dumas
Publication year - 2016
Publication title -
acm transactions on mathematical software
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.767
H-Index - 87
eISSN - 1557-7295
pISSN - 0098-3500
DOI - 10.1145/2829947
Subject(s) - strassen algorithm , matrix multiplication , modulo , mathematics , multiplication algorithm , multiplication (music) , rank (graph theory) , matrix (chemical analysis) , word (group theory) , arithmetic , combinatorics , discrete mathematics , algebra over a field , pure mathematics , binary number , physics , geometry , materials science , quantum mechanics , composite material , quantum
Bini-Capovani-Lotti-Romani approximate formula (or border rank) for matrix multiplication achieves a better complexity than Strassen’s matrix multiplication formula. In this article, we show a novel way to use the approximate formula in the special case where the ring is Z/pZ. In addition, we show an implementation à la FFLAS--FFPACK, where p is a word-size modulo, that improves on state-of-the-art Z/pZ matrix multiplication implementations.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom