z-logo
open-access-imgOpen Access
Algebraic Structures for Capturing the Provenance of SPARQL Queries
Author(s) -
Floris Geerts,
Thomas Unger,
Grigoris Karvounarakis,
Irini Fundulaki,
Vassilis Christophides
Publication year - 2016
Publication title -
journal of the acm
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.672
H-Index - 134
eISSN - 1557-735X
pISSN - 0004-5411
DOI - 10.1145/2810037
Subject(s) - sparql , rdf , computer science , rdf schema , semiring , object (grammar) , theoretical computer science , information retrieval , mathematics , discrete mathematics , semantic web , artificial intelligence
International audienceThe evaluation of SPARQL algebra queries on various kinds of annotated RDF graphs can be seen as a particular case of the evaluation of these queries on RDF graphs annotated with elements of so-called spm-semirings. Spm-semirings extend semirings, used for representing the provenance of positive relational algebra queries on annotated relational data, with a new operator to capture the semantics of the non-monotone SPARQL operators. Furthermore, spm-semiring-based annotations ensure that desired SPARQL query equivalences hold when querying annotated RDF. In this work, in addition to introducing spm-semirings, we study their properties and provide an alternative characterization of these structures in terms of semirings with an embedded boolean algebra (or seba-structure for short). This characterization allows us to construct spm-semirings and identify a universal object in the class of spm-semirings. Finally, we show that this universal object provides a provenance representation of poly-sized overhead and can be used to evaluate SPARQL queries on arbitrary spm-semiring-annotated RDF graphs

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom