z-logo
open-access-imgOpen Access
Garnet–monazite rare earth element relationships in sub-solidus metapelites: a case study from Bhutan
Author(s) -
Clare Warren,
Lucy V. Greenwood,
Tom Argles,
Nick M.W. Roberts,
Randall R. Parrish,
Nigel Harris
Publication year - 2018
Publication title -
geological society london special publications
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.673
H-Index - 132
eISSN - 2041-4927
pISSN - 0305-8719
DOI - 10.1144/sp478.1
Subject(s) - monazite , solidus , geology , rare earth element , geochemistry , rare earth , partial melting , mineralogy , zircon , metallurgy , crust , materials science , alloy
A key aim of modern metamorphic geochronology is to constrain precise and accurate rates and timescales of tectonic processes. One promising approach in amphibolite and granulite-facies rocks links the geochronological information recorded in zoned accessory phases such as monazite to the pressure–temperature information recorded in zoned major rock-forming minerals such as garnet. Both phases incorporate rare earth elements (REE) as they crystallize and their equilibrium partitioning behaviour potentially provides a useful way of linking time to temperature. We report REE data from sub-solidus amphibolite-facies metapelites from Bhutan, where overlapping ages, inclusion relationships and Gd/Lu ratios suggest that garnet and monazite co-crystallized. The garnet–monazite REE relationships in these samples show a steeper pattern across the heavy (H)REE than previously reported. The difference between our dataset and the previously reported data may be due to a temperature-dependence on the partition coefficients, disequilibrium in either dataset, differences in monazite chemistry or the presence or absence of a third phase that competed for the available REE during growth. We urge caution against using empirically-derived partition coefficients from natural samples as evidence for, or against, equilibrium of REE-bearing phases until monazite–garnet partitioning behaviour is better constrained.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom