z-logo
open-access-imgOpen Access
Carbon and hydrogen isotopic compositions of n -alkanes as a tool in petroleum exploration
Author(s) -
Nikolai Pedentchouk,
Courtney Turich
Publication year - 2017
Publication title -
geological society london special publications
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.673
H-Index - 132
eISSN - 2041-4927
pISSN - 0305-8719
DOI - 10.1144/sp468.1
Subject(s) - geology , petroleum , hydrogen , carbon fibers , isotopes of carbon , earth science , geochemistry , petroleum engineering , environmental chemistry , paleontology , chemistry , total organic carbon , organic chemistry , materials science , composite number , composite material
Compound-specific isotope analysis (CSIA) of individual organic compounds is a powerful but underutilized tool in petroleum exploration. When integrated with other organic geochemical methodologies it can provide evidence of fluid histories including source, maturity, charge history and reservoir processes that can support field development planning and exploration efforts. The purpose of this chapter is to provide a review of the methodologies used for generating carbon and hydrogen isotope data for mid- and high-molecular-weight n-alkanes. We discuss the factors that control stable carbon and hydrogen isotope compositions of n-alkanes and related compounds in sedimentary and petroleum systems and review current and future applications of this methodology for petroleum exploration. We discuss basin-specific case studies that demonstrate the usefulness of CSIA either when addressing particular aspects of petroleum exploration (e.g. charge evaluation, source rock–oil correlation, and investigation of maturity and in-reservoir processes) or when this technique is used to corroborate interpretations from integrated petroleum systems analysis, providing unique insights which may not be revealed when using other methods. CSIA of n-alkanes and related n-alkyl structures can provide independent data to strengthen petroleum systems concepts from generation and expulsion of fluids from source rock, to charge history, connectivity, and in-reservoir processes

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom