z-logo
open-access-imgOpen Access
Summit of the East Antarctic Ice Sheet underlain by thick ice-crystal fabric layers linked to glacial–interglacial environmental change
Author(s) -
Bangbing Wang,
Bо Sun,
Carlos Martín,
Fausto Ferraccioli,
Daniel Steinhage,
Xiangbin Cui,
Martín J. Siegert
Publication year - 2017
Publication title -
geological society london special publications
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.673
H-Index - 132
eISSN - 2041-4927
pISSN - 0305-8719
DOI - 10.1144/sp461.1
Subject(s) - interglacial , glacial period , ice sheet , geology , ice sheet model , summit , antarctic ice sheet , wisconsin glaciation , ice stream , oceanography , physical geography , cryosphere , paleontology , sea ice , geography
Ice cores in Antarctica and Greenland reveal ice-crystal fabrics that can be softer under simple shear compared with isotropic ice. Due to the sparseness of ice cores in regions away from the ice divide, we currently lack information about the spatial distribution of ice fabrics and its association with ice flow. Radio-wave reflections are influenced by ice-crystal alignments, allowing them to be tracked provided reflections are recorded simultaneously in orthogonal orientations (polarimetric measurements). Here, we image spatial variations in the thickness and extent of ice fabric across Dome A in East Antarctica, by interpreting polarimetric radar data. We identify four prominent fabric units, each several hundred meters thick, extending over hundreds of square km. By tracing internal ice-sheet layering to the Vostok ice core, we are able to determine the approximate depth-age profile at Dome A. The fabric units correlate with glacial-interglacial cycles, most noticeably revealing crystal alignment contrasts between the Eemian and the glacial episodes before and after. The anisotropy within these fabric layers has a spatial pattern determined by ice flow over subglacial topography

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom