z-logo
open-access-imgOpen Access
Gliding arc triggered microwave plasma arc at atmospheric pressure for coal gasification application
Author(s) -
Vishal Jain,
Anand Visani,
Chirayu Patil,
B. K. Patel,
P. K. Sharma,
P. I. John,
S. K. Nema
Publication year - 2014
Publication title -
international journal of modern physics conference series
Language(s) - English
Resource type - Journals
ISSN - 2010-1945
DOI - 10.1142/s2010194514603457
Subject(s) - microwave , plasma torch , plasma , plasma arc welding , materials science , electric arc , arc (geometry) , electrode , cathode , anode , optoelectronics , electrical engineering , chemistry , welding , mechanical engineering , composite material , physics , quantum mechanics , engineering
Plasma torch is device that efficiently converts electrical energy in to thermal energy for various high temperature applications. The conventional plasma torch comprises of consumable electrodes namely anode and cathode electrodes. The replacement of these electrodes is a complex process owing to its cooling and process shut down requirements. However, microwave plasma arc is electrode-less plasma arc system that is an alternative method to conventional arc technology for generating plasma arc. In this technique, microwave power is efficiently coupled to generate plasma arc by using the property of polar molecule to absorb microwave power. The absorption of microwave power is in form of losses due to intermolecular friction and high collisions between the molecules. This is an efficient method because all microwave power can be absorbed by plasma arc. The main feature of microwave plasma arc is its large uniform high temperature column which is not possible with conventional arc discharge methods. Such type of plasma discharge is very useful in applications where sufficient residence time for treat materials is required. Microwave arc does not require any consumable electrodes and hence, it can be operated continuously that makes it very useful for hazardous effluent treatment applications. Further, microwave cannot ionize neutral particles at atmospheric pressure and hence, a gliding arc is initiated between two thin electrodes in the cavity by applying very low power high voltage (3kV) AC source. In this report, the method for generating microwave arc of 1kW power using commercial microwave oven is elaborated.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom