z-logo
open-access-imgOpen Access
Nitrate reductase from the magnetotactic bacteriumMagnetospirillum magnetotacticumMS-1: purification and sequence analyses
Author(s) -
Azuma Taoka,
Katsuhiko Yoshimatsu,
Masaaki Kanemori,
Yoshihiro Fukumori
Publication year - 2003
Publication title -
canadian journal of microbiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.635
H-Index - 94
eISSN - 1480-3275
pISSN - 0008-4166
DOI - 10.1139/w03-028
Subject(s) - nitrate reductase , biology , nitrite reductase , escherichia coli , biochemistry , periplasmic space , heme , reductase , proteobacteria , napa , microbiology and biotechnology , gene , enzyme , 16s ribosomal rna
We purified the nitrate reductase from the soluble fraction of Magnetospirillum magnetotacticum MS-1. The enzyme was composed of 86- and 17-kDa subunits and contained molybdenum, non-heme iron, and heme c. These properties are very similar to those of the periplasmic nitrate reductase found in Paracoccus pantotrophus. The M. magnetotacticum nap locus was clustered in seven open reading frames, napFDAGHBC. The phylogenetic analyses of NapA, NapB, and NapC suggested a close relationship between M. magnetotacticum nap genes and Escherichia coli nap genes, which is not consistent with the 16S rDNA data. This is the first finding that the alpha subclass of Proteobacteria possesses a napFDAGHBC-type nap gene cluster. The nap gene cluster had putative fumarate and nitrate reduction regulatory protein (Fnr) and NarL protein binding sites. Furthermore, we investigated the effect of molybdate deficiency in medium on the total iron content of the magnetosome fraction and discussed the physiological function of nitrate reductase in relation to the magnetite synthesis in M. magnetotacticum.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom