The photochemical nucleophile–olefin combination, aromatic substitution (photo-NOCAS) reaction. Part 10: intramolecular reactions involving alk-4-enols and 1,4-dicyanobenzene
Author(s) -
Kimberly A. McManus,
Donald R. Arnold
Publication year - 1995
Publication title -
canadian journal of chemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.323
H-Index - 68
eISSN - 1480-3291
pISSN - 0008-4042
DOI - 10.1139/v95-268
Subject(s) - chemistry , enol , intramolecular force , isopropyl , adduct , photochemistry , olefin fiber , acetonitrile , radical ion , medicinal chemistry , electrophilic aromatic substitution , nucleophilic substitution , nucleophile , stereochemistry , ion , organic chemistry , catalysis , polymer
Our study of the photochemical nucleophile–olefin combination, aromatic substitution (photo-NOCAS) reaction has been extended to include alk-4-enols. Irradiation of acetonitrile solutions of the alk-4-enols, 6-methyl-5-hepten-2-ol (16) and 5-methyl-5-hexen-2-ol (17), and the aromatic, 1,4-dicyanobenzene (1), leads to cyclized 1:1 (alk-4-enol:aromatic) adducts. The addition of biphenyl (5) to the irradiation mixture, serving as a codonor, increases the yields and the efficiency of formation of the adducts. The structures assigned to the products trans-2-(isopropyl 4-cyanophenyl)-5-methyltetrahydrofuran (18, 29%) and cis-2-(isopropyl 4-cyanophenyl)-5-methyltetrahydrofuran (19, 24%) from 16 (reaction [5]), and r-2-(methyl 4-cyanophenyl)-2,t-5-dimethyltetrahydrofuran (20, 13%), r-2-(methyl 4-cyanophenyl)-2,c-5-dimethyltetrahydrofuran (21, 7%), r-3-(4-cyanophenyl)-3,t-6-dimethyltetrahydropyran (22, 11%), and r-3-(4-cyanophenyl)-3,c-6-dimethyltetrahydropyran (23, 2%), from 17 (reaction [6]), rests mainly upon analysis of the 1 H and 13 C nuclear magnetic resonance spectra. The structures of 19, 22, and 23 were firmly established by X-ray crystallography. The observed ratio of regioisomers indicates a strong preference for 1,5-exo-trig, relative to 1,6-endo-trig, cyclization of the intermediate alk-4-enol radical cation. The mechanistic implication of these results is discussed. Keywords: photoinduced electron transfer, radical ions, cyclization of radical cations, intramolecular reactions of radical cations.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom