z-logo
open-access-imgOpen Access
Vibrational spectra of two new organic semiconductors: tetrathiafulvalene (TTF) and tetramethyltetraselenafulvalene (TMTSF) salts of paranitrophenylmalononitrile (PNMA)
Author(s) -
K. D. Truong,
A. D. Bandrauk,
J. Zauhar,
C. Carlose
Publication year - 1991
Publication title -
canadian journal of chemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.323
H-Index - 68
eISSN - 1480-3291
pISSN - 0008-4042
DOI - 10.1139/v91-132
Subject(s) - tetrathiafulvalene , chemistry , raman spectroscopy , acceptor , organic semiconductor , infrared spectroscopy , semiconductor , molecule , condensed matter physics , organic chemistry , materials science , physics , optoelectronics , optics
Two new complexes of stoichiometry 2:1 are reported for the donors tetrathiafulvalene (TTF) and tetramethyltetraselenafulvalene (TMTSF) with the acceptor paranitrophenylmalononitrile (PNPMA). Both compounds are semiconductors with a resistivity of about 4 × 10 −4  Ω m for (TMTSF) 2 PNPMA and 0.58 Ω m for (TTF) 2 PNPMA. The larger conductivity of the first complex can be attributed to the disorder of the PNPMA anions. Vibrational spectra were obtained by FTIR and Raman spectroscopy, in order to determine the degree of charge transfer in these systems. Both complexes have the electron distribution (D +0.4 ) 2 A −0.8 . As a result the donors D stack in tetramerized units and exhibit vibronic activation of certain symmetric monomer modes, thus indicating the presence of strong electron–vibrational interactions in the donor stacks. Key words: TTF and TMTSF salts, charge transfer complexes, IR and Raman spectra, degree of charge transfer, paranitrophenylmalononitrile (PNPMA).

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom