SEMICLASSICAL THEORY OF PROTON TRANSPORT IN ICE
Author(s) -
Dong-Yun Kim,
V. Hugo Schmidt
Publication year - 1967
Publication title -
canadian journal of physics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.244
H-Index - 57
eISSN - 1208-6045
pISSN - 0008-4204
DOI - 10.1139/p67-115
Subject(s) - physics , semiclassical physics , debye , proton , ion , phonon , scattering , atomic physics , lattice (music) , condensed matter physics , quantum mechanics , quantum , acoustics
A method is described for calculating proton or other ion mobility which is applicable if mobility is limited by lattice scattering rather than by barrier jumping. The Boltzmann transport equation is used, with the collision term calculated from the electrostatic interactions between the mobile ion and the vibrating lattice. In particular the proton mobility in ice is calculated. The lattice vibrations are approximated by a Debye spectrum for translational vibrations of water molecules, plus an Einstein spectrum for modes in which protons vibrate almost as independent particles. Scattering by phonons somewhat below the Debye cutoff frequency is of the greatest importance in determining the mobility, and the proton modes have negligible effect. The calculated mobility agrees reasonably well with the experimental value.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom