z-logo
open-access-imgOpen Access
Electron transport in Paracoccus halodenitrificans and the role of Ubiquinone
Author(s) -
Lawrence I. Hochstein,
Sonja E. Cronin
Publication year - 1984
Publication title -
canadian journal of microbiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.635
H-Index - 94
eISSN - 1480-3275
pISSN - 0008-4166
DOI - 10.1139/m84-086
Subject(s) - chemistry , pentane , dicoumarol , membrane , photochemistry , biochemistry , enzyme , organic chemistry , nad+ kinase
The membrane-bound NADH oxidase of Paracoccus halodenitrificans was inhibited by dicoumarol, 2-n-heptyl-4-hydroxy-quinoline-N-oxide (HQNO), and exposure to ultraviolet light (at 366 nm). When the membranes were extracted with n-pentane, NADH oxidase activity was lost. Partial restoration was achieved by adding the ubiquinone fraction extracted from the membranes. Succinate oxidation was not inhibited by dicoumarol or HQNO, but was affected by ultraviolet irradiation or n-pentane extraction. However, the addition of the ubiquinone fraction to the membranes extracted with n-pentane did not restore enzyme activity. These observations suggested that NADH and succinate were not oxidized through a common ubiquinone pool.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom