z-logo
open-access-imgOpen Access
The first mitochondrial genome for the wasp superfamily Platygastroidea: the egg parasitoidTrissolcus basalis
Author(s) -
Meng Mao,
Alejandro Valerio,
Andrew D. Austin,
Mark Dowton,
Norman F. Johnson
Publication year - 2012
Publication title -
genome
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.642
H-Index - 99
eISSN - 1480-3321
pISSN - 0831-2796
DOI - 10.1139/g2012-005
Subject(s) - biology , genome , genetics , gene , evolutionary biology , parasitoid , mitochondrial dna , genome size , host (biology)
The nearly complete mitochondrial (mt) genome of an egg parasitoid, Trissolcus basalis (Wollaston), was sequenced using both 454 and Illumina next-generation sequencing technologies. A portion of the noncoding region remained unsequenced, possibly owing to the presence of repeats. The sequenced portion of the genome is 15,768 bp and has a high A+T content (84.2%), as is typical for hymenopteran mt genomes. A total of 36 of the 37 genes normally present in animal mt genomes were located. The one exception was trnR; a truncated version of this gene is present between trnS(1) and nd5, but it is unclear whether this gene fragment could code for the entire trnR gene. The mt gene arrangement of T. basalis is different from other Proctotrupomorpha mt genomes, with a number of trn genes in different positions. However, no shared derived gene rearrangements were identified in the present study. Bayesian analyses of mt genomes from 29 hymenopteran taxa and seven other orders of holometabolous insects support some uncontroversial evolutionary relationships, but indicate that much higher levels of taxonomic sampling are necessary for the resolution of family and superfamily relationships.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom