Gape-dependent Larval Foraging and Zooplankton Size: Implications for Fish Recruitment across Systems
Author(s) -
Mary T. Bremigan,
Roy A. Stein
Publication year - 1994
Publication title -
canadian journal of fisheries and aquatic sciences
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.09
H-Index - 153
eISSN - 1205-7533
pISSN - 0706-652X
DOI - 10.1139/f94-090
Subject(s) - gizzard shad , zooplankton , dorosoma , biology , foraging , predation , ichthyoplankton , forage fish , ecology , fishery , larva , lepomis , predatory fish , planktivore , zoology , fish <actinopterygii> , phytoplankton , nutrient
Small gape of zooplanktivorous larval fish limits their prey size; yet, within constraints set by gape, zooplankton size eaten influences larval growth and ultimately survival. To determine if optimal zooplankton size varied among fish species with different gapes, we conducted foraging trials with larval bluegill (Lepomis macrochirus, 10-26 mm TL) and gizzard shad (Dorosoma cepedianum, 18-31 mm TL). Larvae (n = 10) fed for 1 h on zooplankton assemblages that varied in size, after which all larvae and remaining zooplankton were preserved. Larval gape was measured; both larval gut contents and available zooplankton were quantified. Bluegill, the large-gaped species, fed on larger zooplankton than did gizzard shad with similar gapes. Further, larger bluegill fed on progressively larger zooplankton whereas all gizzard shad ate small prey (<0.60 mm). As available zooplankton size increased, bluegill prey size increased whereas gizzard shad consistently selected small prey. Therefore, differences in zooplankton size among lakes could differentially affect foraging success of larval fishes. In particular, systems with small zooplankton may represent ideal foraging environments for gizzard shad whereas lakes with large zooplankton may favor larval bluegill. If differential larval foraging translates to differential growth and survival, zooplankton size could influence recruitment success and ultimately fish community composition.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom