z-logo
open-access-imgOpen Access
Metrics and sampling designs for detecting trends in the distribution of spawning Pacific salmon (Oncorhynchus spp.)
Author(s) -
Stephanie J. Peacock,
Carrie A. Holt
Publication year - 2012
Publication title -
canadian journal of fisheries and aquatic sciences
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.09
H-Index - 153
eISSN - 1205-7533
pISSN - 0706-652X
DOI - 10.1139/f2012-004
Subject(s) - oncorhynchus , biological dispersal , fishery , habitat , abundance (ecology) , biology , chinook wind , population , ecology , sampling (signal processing) , environmental science , fish <actinopterygii> , filter (signal processing) , computer science , computer vision , demography , sociology
The distribution of individuals among populations and in space may contribute to their resilience under environmental variability. Changes in distribution may indicate the loss of genetically distinct subpopulations, the deterioration of habitat capacity, or both. The distribution of Pacific salmon ( Oncorhynchus  spp.) among spawning locations has recently been recognized as an important component of status assessment by USA and Canadian management agencies, but metrics of spawning distribution have not been rigorously evaluated. We evaluated three metrics of spawning distribution and four sampling designs for their ability to detect simulated contractions in the production of coho salmon ( Oncorhynchus kisutch ). We simulated population dynamics at 100 sites using a spawner–recruit model that incorporated natural variability in recruitment, age-at-maturity, dispersal, and measurement error in observations of abundance. Sensitivity analyses revealed that high observation error and straying of spawners from their natal streams may mask changes in distribution. Furthermore, monitoring only sites with high spawner abundance, as is often practiced, failed to capture the simulated contraction of production, emphasizing the importance of matching monitoring programs with assessment objectives.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom