Bloch Approximation in Homogenization and Applications
Author(s) -
Carlos Conca,
Rafael Orive,
M. Vanninathan
Publication year - 2002
Publication title -
siam journal on mathematical analysis
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.882
H-Index - 92
eISSN - 1095-7154
pISSN - 0036-1410
DOI - 10.1137/s0036141001382200
Subject(s) - homogenization (climate) , mathematics , bloch wave , mathematical analysis , norm (philosophy) , boundary value problem , mathematical physics , quantum mechanics , physics , law , biodiversity , ecology , biology , political science
The classical problem of homogenization of elliptic operators with periodically oscillating coefficients is revisited in this paper. As is well known, the homogenization process in a classical framework is concerned with the study of asymptotic behavior of solutions $u^\varepsilon$ of boundary value problems associated with such operators when the period $\varepsilon>0$ of the coefficients is small. In a previous work by C. Conca and M. Vanninathan [SIAM J. Appl. Math., 57 (1997), pp. 1639--1659], a new proof of weak convergence as $\varepsilon\to 0$ towards the homogenized solution was furnished using Bloch wave decomposition.\udFollowing the same approach here, we go further and introduce what we call Bloch approximation, which will provide energy norm approximation for the solution $u^\varepsilon$. We develop several of its main features. As a simple application of this new object, we show that it contains both the first and second order correctors. Necessarily, the Bloch approximation will have to capture the oscillations of the solution in a sharper way. The present approach sheds new light and offers an alternative for viewing classical results.\ud\u
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom