z-logo
open-access-imgOpen Access
Fine-Grained Multithreading for the Multifrontal $QR$ Factorization of Sparse Matrices
Author(s) -
Alfredo Buttari
Publication year - 2013
Publication title -
siam journal on scientific computing
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.674
H-Index - 147
eISSN - 1095-7197
pISSN - 1064-8275
DOI - 10.1137/110846427
Subject(s) - computer science , parallel computing , multi core processor , multithreading , granularity , dataflow , scalability , sparse matrix , computation , programming paradigm , computational science , theoretical computer science , thread (computing) , algorithm , programming language , physics , quantum mechanics , database , gaussian
The advent of multicore processors represents a disruptive event in the history of computer science as conventional parallel programming paradigms are proving incapable of fully exploiting their potential for concurrent computations. The need for different or new programming models clearly arises from recent studies which identify fine-granularity and dynamic execution as the keys to achieving high efficiency on multicore systems. This work presents an approach to the parallelization of the multifrontal method for the $QR$ factorization of sparse matrices specifically designed for multicore based systems. High efficiency is achieved through a fine-grained partitioning of data and a dynamic scheduling of computational tasks relying on a dataflow parallel programming model. Experimental results show that an implementation of the proposed approach achieves higher performance and better scalability than existing equivalent software

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom