Efficient Iterative Solvers for Stochastic Galerkin Discretizations of Log-Transformed Random Diffusion Problems
Author(s) -
Elisabeth Ullmann,
Howard C. Elman,
Oliver G. Ernst
Publication year - 2012
Publication title -
siam journal on scientific computing
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.674
H-Index - 147
eISSN - 1095-7197
pISSN - 1064-8275
DOI - 10.1137/110836675
Subject(s) - mathematics , krylov subspace , galerkin method , relaxation (psychology) , discontinuous galerkin method , solver , matrix (chemical analysis) , gaussian , iterative method , mathematical optimization , nonlinear system , finite element method , physics , thermodynamics , psychology , social psychology , materials science , quantum mechanics , composite material
We consider the numerical solution of a steady-state diffusion problem where the diffusion coefficient is the exponent of a random field. The standard stochastic Galerkin formulation of this problem is computationally demanding because of the nonlinear structure of the uncertain component of it. We consider a reformulated version of this problem as a stochastic convection-diffusion problem with random convective velocity that depends linearly on a fixed number of independent truncated Gaussian random variables. The associated Galerkin matrix is nonsymmetric but sparse and allows for fast matrix-vector multiplications with optimal complexity. We construct and analyze two block-diagonal preconditioners for this Galerkin matrix for use with Krylov subspace methods such as the generalized minimal residual method. We test the efficiency of the proposed preconditioning approaches and compare the iterative solver performance for a model problem posed in both diffusion and convection-diffusion formulations.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom