Solution of Linear Systems and Matrix Inversion in the TT-Format
Author(s) -
Ivan Oseledets,
Sergey Dolgov
Publication year - 2012
Publication title -
siam journal on scientific computing
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.674
H-Index - 147
eISSN - 1095-7197
pISSN - 1064-8275
DOI - 10.1137/110833142
Subject(s) - curse of dimensionality , numerical linear algebra , solver , linear algebra , mathematics , density matrix renormalization group , tensor (intrinsic definition) , matrix (chemical analysis) , dimension (graph theory) , algebra over a field , numerical analysis , mathematical optimization , pure mathematics , renormalization group , mathematical analysis , geometry , statistics , materials science , composite material , mathematical physics
Tensors arise naturally in high-dimensional problems in chemistry, financial mathematics, and many other areas. The numerical treatment of such problems is difficult due to the curse of dimensionality: the number of unknowns and the computational complexity grow exponentially with the dimension of the problem. To break the curse of dimensionality, low-parametric representations, or formats, have to be used. In this paper we make use of the TT-format (tensor-train format) which is one of the most effective stable representations of high-dimensional tensors. Basic linear algebra operations in the TT-format are now well developed. Our goal is to provide a “black-box” type of solver for linear systems where both the matrix and the right-hand side are in the TT-format. An efficient DMRG (density matrix renormalization group) method is proposed, and several tricks are employed to make it work. The numerical experiments confirm the effectiveness of our approach.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom