z-logo
open-access-imgOpen Access
Reactive Molecular Dynamics: Numerical Methods and Algorithmic Techniques
Author(s) -
Hasan Metin Aktulga,
Sagar Pandit,
Adri C. T. van Duin,
Ananth Grama
Publication year - 2012
Publication title -
siam journal on scientific computing
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.674
H-Index - 147
eISSN - 1095-7197
pISSN - 1064-8275
DOI - 10.1137/100808599
Subject(s) - quantum nonlocality , quantum , statistical physics , molecular dynamics , electrostatics , charge (physics) , computer science , computation , physics , quantum mechanics , algorithm , quantum entanglement
Modeling atomic and molecular systems requires computation-intensive quantum mechanical methods such as, but not limited to, density functional theory [R. A. Friesner, Proc. Natl. Acad. Sci. USA, 102 (2005), pp. 6648-6653]. These methods have been successful in predicting various properties of chemical systems at atomistic scales. Due to the inherent nonlocality of quantum mechanics, the scalability of these methods ranges from O($N^3$) to O($N^7$) depending on the method used and approximations involved. This significantly limits the size of simulated systems to a few thousand atoms, even on large scale parallel platforms. On the other hand, classical approximations of quantum systems, although computationally (relatively) easy to implement, yield simpler models that lack essential chemical properties such as reactivity and charge transfer. The recent work of van Duin et al. [J. Phys. Chem. A, 105 (2001), pp. 9396-9409] overcomes the limitations of nonreactive classical molecular dynamics (MD) approximations by carefully incorporating limited nonlocality (to mimic quantum behavior) through an empirical bond order potential. This reactive classical MD method, called ReaxFF, achieves essential quantum properties, while retaining the computational simplicity of classical MD, to a large extent. Implementation of reactive force fields presents significant algorithmic challenges. Since these methods model bond breaking and formation, efficient implementations must rely on complex dynamic data structures. Charge transfer in these methods is accomplished by minimizing electrostatic energy through charge equilibration. This requires the solution of large linear systems ($10^8$ degrees of freedom and beyond) with shielded electrostatic kernels at each time-step. Individual time-steps are themselves typically in the range of tenths of femtoseconds, requiring optimizations within and across time-steps to scale simulations to nanoseconds and beyond, where interesting phenomena may be observed. In this paper, we present implementation details of sPuReMD (serial Purdue reactive molecular dynamics program), a unique reactive classical MD code. We describe various data structures, and the charge equilibration solver at the core of the simulation engine. This Krylov subspace solver relies on a preconditioner based on incomplete LU factorization with thresholds (ILUT), specially targeted to our application. We comprehensively validate the performance and accuracy of sPuReMD on a variety of hydrocarbon systems. In particular, we show excellent per-time-step time, linear time scaling in system size, and a low memory footprint. sPuReMD is a freely distributed software with GPL and is currently being used to model diverse systems ranging from oxidative stress in biomembranes to strain relaxation in Si-Ge nanorods.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom