z-logo
open-access-imgOpen Access
A Primal-Dual Finite Element Approximation for a Nonlocal Model in Plasticity
Author(s) -
Christian Wieners,
Barbara Wohlmuth
Publication year - 2011
Publication title -
siam journal on numerical analysis
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.78
H-Index - 134
eISSN - 1095-7170
pISSN - 0036-1429
DOI - 10.1137/100789397
Subject(s) - mathematics , discretization , variational inequality , finite element method , nonlinear system , mathematical analysis , curl (programming language) , numerical analysis , solver , newton's method , mathematical optimization , physics , quantum mechanics , computer science , thermodynamics , programming language
We study the numerical approximation of a static infinitesimal plasticity model of kinematic hardening with a nonlocal extension. Here, the free energy to be minimized is a combination of the elastic energy and an additional term depending on the curl of the plastic variable. First, we introduce the stress as dual variable and provide an equivalent primal-dual formulation resulting in a local flow rule. The discretization is based on curl-conforming Nédélec elements. To obtain optimal a priori estimates, the finite element spaces have to satisfy a uniform inf-sup condition. This can be guaranteed by adding locally defined face and element bubbles. Second, the discrete variational inequality system is reformulated as a nonlinear equality. We show that the classical radial return algorithm applied to the mixed inequality formulation is equivalent to a semismooth Newton method for the nonlinear system of equations. Numerical results illustrate the convergence of the applied discretization and the solver.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom