
The Complexity of All-switches Strategy Improvement
Author(s) -
Rahul Savani,
John Fearnley
Publication year - 2015
Language(s) - English
Resource type - Conference proceedings
DOI - 10.1137/1.9781611974331.ch10
Subject(s) - computer science
Strategy improvement is a widely-used and well-studied class of algorithms for solving graph-based infinite games. These algorithms are parametrized by a switching rule, and one of the most natural rules is "all switches" which switches as many edges as possible in each iteration. Continuing a recent line of work, we study all-switches strategy improvement from the perspective of computational complexity. We consider two natural decision problems, both of which have as input a game G, a starting strategy s, and an edge e. The problems are: 1. The edge switch problem, namely, is the edge e, ever switched by all-switches strategy improvement when it is started from s on game G? 2. The optimal strategy problem, namely, is the edge e used in the final strategy that is found by strategy improvement when it is started from s on game G? We show PSPACE-completeness of the edge switch problem and optimal strategy problem for the following settings: Parity games with the discrete strategy improvement algorithm of Voge and Jurdzinski; mean-payoff games with the gain-bias algorithm; and discounted-payoff games and simple stochastic games with their standard strategy improvement algorithms. We also show PSPACE-completeness of an analogous problem to edge switch for the bottom-antipodal algorithm for Acyclic Unique Sink Orientations on Cubes