z-logo
open-access-imgOpen Access
The Complexity of All-switches Strategy Improvement
Author(s) -
Rahul Savani,
John Fearnley
Publication year - 2015
Language(s) - English
Resource type - Conference proceedings
DOI - 10.1137/1.9781611974331.ch10
Subject(s) - computer science
Strategy improvement is a widely-used and well-studied class of algorithms for solving graph-based infinite games. These algorithms are parametrized by a switching rule, and one of the most natural rules is "all switches" which switches as many edges as possible in each iteration. Continuing a recent line of work, we study all-switches strategy improvement from the perspective of computational complexity. We consider two natural decision problems, both of which have as input a game G, a starting strategy s, and an edge e. The problems are: 1. The edge switch problem, namely, is the edge e, ever switched by all-switches strategy improvement when it is started from s on game G? 2. The optimal strategy problem, namely, is the edge e used in the final strategy that is found by strategy improvement when it is started from s on game G? We show PSPACE-completeness of the edge switch problem and optimal strategy problem for the following settings: Parity games with the discrete strategy improvement algorithm of Voge and Jurdzinski; mean-payoff games with the gain-bias algorithm; and discounted-payoff games and simple stochastic games with their standard strategy improvement algorithms. We also show PSPACE-completeness of an analogous problem to edge switch for the bottom-antipodal algorithm for Acyclic Unique Sink Orientations on Cubes

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here