z-logo
open-access-imgOpen Access
Griggs and Yeh's Conjecture and $L(p,1)$-labelings
Author(s) -
Frédéric Havet,
Bruce Reed,
JeanSébastien Sereni
Publication year - 2012
Publication title -
siam journal on discrete mathematics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.843
H-Index - 66
eISSN - 1095-7146
pISSN - 0895-4801
DOI - 10.1137/090763998
Subject(s) - combinatorics , mathematics , conjecture , graph , vertex (graph theory) , integer (computer science) , degree (music) , discrete mathematics , physics , computer science , acoustics , programming language
International audienceAn L(p,1)-labeling of a graph is a function f from the vertex set to the positive integers such that |f(x) − f(y)| ≥ p if dist(x, y) = 1 and |f(x) − f(y)| ≥ 1 if dist(x, y) = 2, where dist(x,y) is the distance between the two vertices x and y in the graph. The span of an L(p,1)- labeling f is the difference between the largest and the smallest labels used by f. In 1992, Griggs and Yeh conjectured that every graph with maximum degree Δ ≥ 2 has an L(2, 1)-labeling with span at most Δ^2. We settle this conjecture for Δ sufficiently large. More generally, we show that for any positive integer p there exists a constant Δ_p such that every graph with maximum degree Δ ≥ Δ_p has an L(p,1)-labeling with span at most Δ^2. This yields that for each positive integer p, there is an integer C_p such that every graph with maximum degree Δ has an L(p,1)-labeling with span at most Δ^2 + C_p

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom