Asymptotic Stability of Small Bound States in the Discrete Nonlinear Schrödinger Equation
Author(s) -
P. G. Kevrekidis,
Dmitry E. Pelinovsky,
Atanas Stefanov
Publication year - 2009
Publication title -
siam journal on mathematical analysis
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.882
H-Index - 92
eISSN - 1095-7154
pISSN - 0036-1410
DOI - 10.1137/080737654
Subject(s) - mathematics , eigenvalues and eigenvectors , dimension (graph theory) , nonlinear system , mathematical analysis , bound state , exponential stability , upper and lower bounds , nonlinear schrödinger equation , schrödinger equation , stability (learning theory) , simple (philosophy) , mathematical physics , quantum mechanics , pure mathematics , physics , philosophy , epistemology , machine learning , computer science
Asymptotic stability of small bound states in one dimension is proved in the frame- work of a discrete nonlinear Schrodinger equation with septic and higher power-law nonlinearities and an external potential supporting a simple isolated eigenvalue. The analysis relies on the dis- persive decay estimates from Pelinovsky and Stefanov (J. Math. Phys., 49 (2008), 113501) and the arguments of Mizumachi (J. Math. Kyoto Univ., 48 (2008), pp. 471-497) for a continuous nonlinear Schrodinger equation in one dimension. Numerical simulations suggest that the actual decay rate of perturbations near the asymptotically stable bound states is higher than the one used in the analysis.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom