Iterative Solvers for the Stochastic Finite Element Method
Author(s) -
Eveline Rosseel,
Stefan Vandewalle
Publication year - 2010
Publication title -
siam journal on scientific computing
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.674
H-Index - 147
eISSN - 1095-7197
pISSN - 1064-8275
DOI - 10.1137/080727026
Subject(s) - multigrid method , preconditioner , discretization , mathematics , solver , finite element method , krylov subspace , mathematical optimization , partial differential equation , iterative method , generalized minimal residual method , mathematical analysis , physics , thermodynamics
This paper presents an overview and comparison of iterative solvers for linear stochastic partial differential equations (PDEs). A stochastic Galerkin finite element discretization is applied to transform the PDE into a coupled set of deterministic PDEs. Specialized solvers are required to solve the very high-dimensional systems that result after a finite element discretization of the resulting set. This paper discusses one-level iterative methods, based on matrix splitting techniques; multigrid methods, which apply a coarsening in the spatial dimension; and multilevel methods, which make use of the hierarchical structure of the stochastic discretization. Also Krylov solvers with suitable preconditioning are addressed. A local Fourier analysis provides quantitative convergence properties. The efficiency and robustness of the methods are illustrated on two nontrivial numerical problems. The multigrid solver with block smoother yields the most robust convergence properties, though a cheaper point smoother performs as well in most cases. Multilevel methods based on coarsening the stochastic dimension perform in general poorly due to a large computational cost per iteration. Moderate size problems can be solved very quickly by a Krylov method with a mean-based preconditioner. For larger spatial and stochastic discretizations, however, this approach suffers from its nonoptimal convergence properties.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom