z-logo
open-access-imgOpen Access
Least-Change Sparse Secant Update Methods with Inaccurate Secant Conditions
Author(s) -
J. E. Dennis,
Homer F. Walker
Publication year - 1985
Publication title -
siam journal on numerical analysis
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.78
H-Index - 134
eISSN - 1095-7170
pISSN - 0036-1429
DOI - 10.1137/0722046
Subject(s) - secant method , mathematics , newton's method , nonlinear system , physics , quantum mechanics
We investigate the role of the secant or quasi-Newton condition in the sparse Broyden or Schubert update method for solving systems of nonlinear equations whose Jacobians are either sparse, or can be approximated acceptably by conveniently sparse matrices. We develop a theory on perturbations to the secant equation that will still allow a proof of local q-linear convergence. To illustrate the theory, we show how to generalize the standard secant condition to the case when the function difference is contaminated by noise.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom