z-logo
open-access-imgOpen Access
A Convergent Adaptive Method for Elliptic Eigenvalue Problems
Author(s) -
Stefano Giani,
Ivan G. Graham
Publication year - 2009
Publication title -
siam journal on numerical analysis
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.78
H-Index - 134
eISSN - 1095-7170
pISSN - 0036-1429
DOI - 10.1137/070697264
Subject(s) - mathematics , eigenvalues and eigenvectors , eigenfunction , finite element method , nonlinear system , mathematical analysis , partial differential equation , convergence (economics) , bounded function , elliptic operator , estimator , physics , quantum mechanics , economics , thermodynamics , economic growth , statistics
We prove the convergence of an adaptive linear finite element method for computing eigenvalues and eigenfunctions of second-order symmetric elliptic partial differential operators. The weak form is assumed to yield a bilinear form which is bounded and coercive in H-1. Each step of the adaptive procedure refines elements in which a standard a posteriori error estimator is large and also refines elements in which the computed eigenfunction has high oscillation. The error analysis extends the theory of convergence of adaptive methods for linear elliptic source problems to elliptic eigenvalue problems, and in particular deals with various complications which arise essentially from the nonlinearity of the eigenvalue problem. Because of this nonlinearity, the convergence result holds under the assumption that the initial finite element mesh is sufficiently fine

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom