z-logo
open-access-imgOpen Access
A Symmetry Preserving Singular Value Decomposition
Author(s) -
Mili Shah,
Danny C. Sorensen
Publication year - 2006
Publication title -
siam journal on matrix analysis and applications
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.268
H-Index - 101
eISSN - 1095-7162
pISSN - 0895-4798
DOI - 10.1137/050646676
Subject(s) - singular value decomposition , symmetry (geometry) , reflection symmetry , plane symmetry , mathematics , singular value , rotational symmetry , rotation (mathematics) , eigenvalues and eigenvectors , algorithm , geometry , physics , quantum mechanics
A reduced order representation of a large data set is often realized through a principal component analysis based upon a singular value decomposition (SVD) of the data. The left singular vectors of a truncated SVD provide the reduced basis. In several applications such as facial analysis and protein dynamics, structural symmetry is inherent in the data. Typically, reflective or rotational symmetry is expected to be present in these applications. In protein dynamics, determining this symmetry allows one to provide SVD major modes of motion that best describe the symmetric movements of the protein. In face detection, symmetry in the SVD allows for more efficient compression algorithms. Here we present a method to compute the plane of reflective symmetry or the axis of rotational symmetry of a large set of points. Moreover, we develop a symmetry preserving singular value decomposition (SPSVD) that best approximates the given set while respecting the symmetry. Interesting subproblems arise in the presence of noisy data or in situations where most, but not all, of the structure is symmetric. An important part of the determination of the axis of rotational symmetry or the plane of reflective symmetry is an iterative reweighting scheme. This scheme is rapidly convergent in practice and seems to be very effective in ignoring outliers (points that do not respect the symmetry).

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom