Exact Algorithms for Treewidth and Minimum Fill-In
Author(s) -
Fedor V. Fomin,
Dieter Kratsch,
Ioan Todinca,
Yngve Villanger
Publication year - 2008
Publication title -
siam journal on computing
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.533
H-Index - 122
eISSN - 1095-7111
pISSN - 0097-5397
DOI - 10.1137/050643350
Subject(s) - treewidth , combinatorics , mathematical proof , vertex (graph theory) , mathematics , partial k tree , graph , discrete mathematics , 1 planar graph , algorithm , pathwidth , chordal graph , line graph , geometry
We show that the treewidth and the minimum fill-in of an $n$-vertex graph can be computed in time $\mathcal{O}(1.8899^n)$. Our results are based on combinatorial proofs that an $n$-vertex graph has $\mathcal{O}(1.7087^n)$ minimal separators and $\mathcal{O}(1.8135^n)$ potential maximal cliques. We also show that for the class of asteroidal triple-free graphs the running time of our algorithms can be reduced to $\mathcal{O}(1.4142^n)$.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom